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ERROR BOUNDS FOR GAUSS-KRONROD 
QUADRATURE FORMULAE 

SVEN EHRICH 

ABSTRACT. The Gauss-Kronrod quadrature formula QGK is used for a prac- 
tical estimate of the error RG of an approximate integration using the Gaussian 
quadrature formula QG. Studying an often-used theoretical quality measure, 
for QK we prove best presently known bounds for the error constants 

cs (RGK1 )1= sup IRqGK 1 [f]I 
jjf(s)jj ?lo<1 

in the case s = 3n + 2 ? K, K = Ln+j1 - Ln2 . A comparison with the Gaussian 
quadrature formula QG shows that there exist quadrature formulae using 
the same number of nodes but having considerably better error conistants. 

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS 

For a given nonnegative and integrable weight function w on [-1, 1], a 
quadrature formula Q, and the corresponding remainder Rn of (precise) de- 
gree of exactness deg(R,) = s are linear functionals defined by 

n rlI 

Qn[f] = ,av, nf(Xv,n), Rnj[f] w (x)f(x) dx-Qn[f] 
v=1 

deg(Rn) = sRn[PVv]{=0' v=O, 1,...,~s, Pv(X) =XV 
{O v =s+1 , 

with nodes -oo < x1,n < < Xn,n < oc and weights av,n E IR. It is 
well known that the Gaussian quadrature formula QnG[f] = ZEn. aG$ Gf(x? n) 

having the highest possible degree of exactness deg(RG) = 2n- 1 exists uniquely 
under these assumptions. 

In order to obtain an estimate for Rn [f] in practice, often a second quadra- 
ture formula is used whose nodes, for economical reasons, include xG ,*.., 

Xn, n . If there exist n + 1 further real and distinct nodes 4I n , 2n+1 ,2n+1 

and weights 2l ' .. ,2n+1 ' f ,)2n+)1 ' . .,n--i ,2n+1 such that the quad- 
rature formula 

n n+I 

Q2n+ 1I[f] Z E ,)2n+ + Z AH),2n+1f(Y,2n+1) 
vI=1 8-1 
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satisfies deg(RG4K 1) > 3n + , then QGK I is called a Gauss-Kronrod quadrature 
formula. Considering QGnKI [f] as a much better approximation than Q7G[f], 

their difference serves as an estimate for RnG[f]. 

For surveys on this method, cf. Gautschi [5] and Monegato [8], while for 
existence results with respect to special weight functions w cf., e.g., Szego [14] 
and the recent results of Notaris [9] and Peherstorfer [10]. 

The Gauss-Kronrod method is basic for several practical integration routines, 
e.g. in QUADPACK [11], and hence one of the most often used methods for 
approximate integration with practical error estimate. Yet, there is still a need 
for a theoretical study of R7G4K+ which could justify the important role Gauss- 
Kronrod quadrature plays in practical numerical computation (cf. [8, Part 11.2]). 

As a basis of a systematic study, and as an often-used quality measure, we 
define the error constants c, (R4GK 1) by 

Cs (R 
GK 

1) = sup JR 
GK 

1[f]J, 
j1f(S) 1-ooU 

where gJI := supx[, g1] jg(x)I for g: [-1, 1] R. By definition, the error 
constants CS (R GnK) are the smallest real values independent of f satisfying 
the standard error bounds 

R RGnK 1[ f] | < cs (R GnK )| |f (S) | | o 

and are well known to exist whenever deg(RGnK 1) > s - 1 (cf. [1]). 
Brass and Forster [2] proved 

- 2n(Rn+ I < const (3Cn 

and considered this result as a theoretical explanation for the significant supe- 
riority of QGnK1 over QnG. 

Only very little is known about the quality of Q2GnK itself. Rabinowitz [12] 
proved the existence of cs (RGK 1) for s = 1 , ...,3 n + 2 + K , K = [n J [_ L n I 
and nonexistence for s > 3n + 2 + K showing that deg(R24K+) = 3n + 1 + K; 

cf. also Rabinowitz [13] for a proof of the nondefiniteness of R GnK+. Brass and 
Forster [2], Brass and Schmeisser [3], and Monegato [7] proved upper bounds 
for C3n+2+K(RGnK1). In the following theorem, we give lower bounds as well 
as new upper bounds for C3n+2+K(RGK 1) in the case w -1 that improve the 
hitherto best-known bounds. 

Theorem. Let w 1, n > 4, K-= Ln+1J - L] J. Then there holds 

C3n+2+K(R2K 1) < C3n+2+K(R2G+ 1), 

where 

c3n+2+2c (R2n+ I n + 2 + K)!23n+K {1 0 ,/3 n-3 (2 + cK) 

\ 1(6n + 3 + 2K)(6n 1 5 1 2K) 
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Furthermore, for n even there holds 

C3n+ (RGK 1 2n+ [n!]4 
( 

l wa) 
c3n+2(RI4.a) 3eV'7E (3n + 2)! (2n)!(2n + 1)! 

( 3n - 2 (2n + 3)(5n - 3)2 

2- 2n (n - 2)2(n + 2)(3n - 1)3(3n + 1)2' 

while for n odd there holds 

(RiGK\ 1 2n3 [n!]4 
C3n+3 x2nf+,) > 27ev'- (3n + 3)! (2n)!(2n + 1)! 

( 3n - 1 (2n + 3)(5n2 - 7n + 3)2 

n2- 3n (n - 1)2n2(n + 2)(n - 3)2(3n - 3)(3n - 2)2 

Remark. While the upper bound in the theorem improves known results, it 
may still be sharpened. However, an improvement can only be obtained by a 
polynomial factor, since it follows that 

C~3n+2+Kc(R2n4 1) = 0(n5) 
C3n+2+K (RGnKl) 

if we replace C3n+2+K(RGnKl) by the lower bounds (1). A result of Brass and 
Schmeisser [3, Theorem 7] implies that amongst all quadrature formulae Qm 
with positive weights and degree of exactness deg(Qm) > 3n+1 + K, the Lobatto 
formula QM* for m* = 3n+22+K is worst with respect to the error constant 
C3n+2+K(R2 lG ), i.e. (cf. [1, p. 149]) 

C3n+2+K(Rm) < C3n+2+K(RL*) 7r2(3n+2+K)( 1 + o(1)) as n - oc. 

The lower bounds (1) now prove that Q2GnK+ can be better than this upper 
bound only by a polynomial factor (O(n5 5))-1 . Note that Brass and Schmeisser 

[3, Remark 4] explicitly construct a positive quadrature formula QBS+2+K that 

satisfies 

C3n+2+3n+2+R+2+K ) = ?4 t + o(1)) as n x. 
In the following corollary we will compare Q2GnK and Q2G in order to 

show that there also exist quadrature formulae using the same number of nodes 
but having considerably better error constants. 

Corollary. Let w _ 1, n > 1. Then c3n+2+K(R2Gf+l) ? c3f+2+K(R24Kl), and 
we have equality only in the case n = 1, where the Gaussian formula and the 
Gauss-Kronrodformula are identical. Furthermore, for n > 15 there holds the 
sharper bound 

c3fl+2+K(R2n+ 1) < 3-n+1 

C3n+2+Kc(RGK+ 1) 

while asymptotically we find 

lm c3+2+(RGK ) 6 1 
nfl4oo C3n+2+K(RGK~l 77 4.2013...' 
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2. PROOFS OF THE RESULTS 

In the sequel let m -L " 1 
= m - L[2, and let - denote the space of 

polynomials of degree less than or equal to s. 

Proof of the Theorem. We will first prove the lower bounds (1). Let En+ 1 (E n+I 
be defined by 

m-l f am,nTi I n even, 
En+1 = ZavnTn+1-2v+ o 

v=O ~~~~~Ice n odd, 
where Tv denotes the vth Chebyshev Polynomial of the first kind and 

v-1 

cYO,n= 1, v,n =-fv,n-Z f ,nCav-u,n n v= 2 3,... 

(2) jt=1 

fO,n = ,fv, n = v, nfv- 1,n gv ,n=(1-2)1-2 2 ) 

For reasons of simplicity, when no ambiguity arises, we do not indicate the 
dependence on n, i.e., av := Ofv,n fv := fv,n, and v :=Cv, ,n . The zeros of 
En+, are the additionally chosen nodes 1,2n+l ) . n+1,2n+1 of Q2n+ (Cf 
[7]). Rabinowitz [12] showed that with gK = PnEn+lPn+l++K (Pv denoting the 
vth Legendre Polynomial) there holcis, for n even, 

R2n+ 1[go]= 2 + 2(aema-m+) I 

while for n odd, there holds 

R GK [ ] 2n + 3 
R2n+1[g!] =(2n ? 2)(2n ? 4) (aem-i - a+) 

From the definition of the error constants Cs(RGK 1) we get 

Cs(R42n+l) > 2R 1'I4II for all f E Cs[-1, 1]\9s-. 
I1f(s) K00 

Defining pv(x) := xv, we conclude 

GK JRG4K I [P3n+2+K ]I 
C3n+2+K (R2fln+ I) (3n + 2+ K)! 

Taking into account the leading coefficients of Pv and En+1 , one readily verifies 

gK(X) (2n)! 2n (2n +? 2 2K)! - 3n+2+K + p (X ) P e Y3n+I+K 
2n (n!) 2 2n+l+K [(n + 1 ? Kc)!]2X 

and, using the linearity and the degree of exactness of R GnK+ 

(3) R2GnK+ 1i[P3n+2+K] = (2n)!(2n ? l)]! (am-K - am+l). 

We will now derive lower bounds for the difference lanmK - aln+il. Szeg6 
[14] proved that the sequence (-av+?) is positive throughout, and completely 
monotonic, i.e., 

(-1)v+lAvav+l > 0, v = , 1, 2, ..., 

while for its sum he proved E% a+ = -1. In the following Lemma 1 we 
state some further properties of (av) needed here; the proof of Lemma 1 will 
be given later. 
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Lemma 1. The sequence (a,1) satisfies 

v-1 

a=l, a=-f1, av =Z aAfv- 1 -U (UaV-UV ),U > 2 

Bounds for (a,) are given by 

fV-i(oV - UV) < lavl < fJVl(oV - rl). 

Lower bounds for the differences of (a1v) are, for every p E N, 

P (av+j - av) ? acv+p - av, 

P(Iv+I - -vC-1) > aiv+2p+1 - Cv-1. 

According to the lower bounds for the differences in Lemma 1, we are now 

looking for p p(n) such that the right-hand sides of 

lam-am+l I> 1(n)f(vm1(cm -m1)-fm+p(n)- 1( - CM)) 

for n even, and 

lam-l -m+ - p(n ) (fMr-2(Qm-1 - m-2) -fm+2p(n)(1 - M)) 

for n odd, be positive and as big as possible. (Recall the definition of m at 
the beginning of this section.) By (2) we calculate 1 - a, = n+23 and for even 
n > 2, 

amn - =mi 4(5n - 3) 
(n-2)(3n- 1)(3n+ 1) 

while for odd n > 3, 

4(5n2 - 7n + 3) 
dm-i - 0m-2 = 

3n(n - 3)(n - 1)(3n - 2) 

Now let n be even. The following representation of the fv can easily be proved 
by induction: 

(4) fv - (2v)! [(n + v)!1 2 (2n + 1)! 
[v!]2 lin! (2n + 2v + 1)! 

We determine p = p(n) such that 

4(5n -3) fn?+2 
fm- (n - 2)(3n - 1)(3n + 1) fm+p(n)-1 2n + 3 

holds, which is equivalent to 

4(2n + 3)(5n - 3) 

(n - 2)(n + 2)(3n - 1)(3n + 1) 

(2m + 2p(n) - 2)! ((m - 1)!)2 (2n + 2m - 2)! 

[(m + p(n) - 1)!]2 (2m - 2)! ((n + m - 1)!)2 

((n?+m+p(n)- 1)!)2 
(2n + 2m + 2p(n) -2)! 
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For the right side of the inequality we find by some elementary calculation, 
using Stirling's formula, 

(2m + 2p(n) - 2)! ((m - 1)!)2 (2n + 2m - 2)! ((n + m +?p(n) -- 1)!)2 

[(m +?p(n) - 1)!]2 (2m - 2)! ((n + n - 1)!)2 (2n + 2m + 2p(n) - 2)! 
2n+2m- 1 

2n+2m+?2p(n)- 1 

Replacing the right side of (5) by this simpler estimate, the following condition 
for p(n) arises: 

2p (n) > e(n-2)(n+2)(3n - 1)2(3n 1) -(3n- 1). 
4(5n - 3)(2n + 3) 

We may now choose p(n) for n even as 

-=/F(n - 2)(n + 2)(3n - 1)2(3n + 1) - 3 ' c > 1 
p(n) [C ~8(2'ln ? 3)(5n - 3) 2 C_ 

leading to 

Iem -aCm+l I> 1 fm 1 4(5n -3) (1 < 
p (n) - (n - 2)(3n - 1)(3n + 1) c 

where for n > 4 from (4), using Stirling's formula, we can show 

2 3n-2 
fm-l > v3 V n(n - 2) 

Since by definition of p(n), 

p(n) < c e(n - 2)(n + 2)(3n - 1)2(3n + 1) 
p(n)?c. ~8(5n -3)(2n?+3) 

we readily conclude 

64 3n-2 (2n + 3)(5n - 3)2 (c- 

3e\/7 n(n-2)(n-2)(n+2)(3n-1)3(3n+1)2 k\c2 

Maximizing the right side with respect to c > 1 leads to c = 2 and therefore 
to the asserted inequality for n even. For the proof of the lower bound for 
lam-1 - am+11, n odd, we can proceed in an analogous way. This time, a 
sufficient condition for the p(n) is 

4(2n + 3)(5n2- 7n + 3) 2n + 2m - 4 
3(n - 3)(n - 1)n(n + 2)(3n - 2) 2n + 2m + 4p(n) + 1 

For n odd, we then choose 

3v/e(n - 3)(n - 1)n(n + 2)(3n - 3)(3n - 2) 3n +21 c2>1 
p(n) :=c - I, > 

I ~~16(2n ? 3)(5n2 - 7n ? 3) 4j 

Using the inequality 
2 /3n-1 

fm-2> e 1n(n-3) 

leads again, after maximization with respect to c, to the lower bound for n 
odd. 

We will now prove the upper bounds stated in the Theorem with the help of 
the following lemma, which is contained in [2, Theorem 1]. 
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Lemma 2. Let R be a continuous, linear functional on C[- 1, 1] satisfying 
R[3ml]=O, and let 

2 m!2m s-1 p(m)(X 
m,7X (2m)! p(m) (1) 

where p(m) denotes the 1uth ultraspherical polynomial of order m. The limit 

Km(x) := lim Km,s(x), x E [-1, 1], 

exists. If f E Cm [-1 , 1], then 

R[f] = f(m)(x)Km (x) dx. 

If s = O, 1, 2,..., then 

cm(R) = J IKm,s(x)l dx + ps, 

where 
I < 1 { (2m)!s! 2m+s 1/2 

Psi ? ~~~~~~SUP IR[T,imI 
lpi<m!2m-1 (2m + s)! 2m - 1 

uml 

Using (3) and TV(x) = 2v-1xv +p(x), P E , we find 

(6) RGK4l[T3n+2+K] = (2n)!(2n] l)!(am-K -am+). 

Taking advantage of the monotonicity of (-a,+,), from Lemma 1 we get 

(7) am-IK - am+1 I < kam-KI < fm-1--K (Um--K - CO) 

Using (4), we obtain by the use of Stirling's formula 

(8) 
Jm-1-K < 2n + 2-K 3n-2 + K 

(8) frn-1--K? 3n n n-2-K) 

According to (2) we get for n even 

3n2 _ n - 10 
(9) am - m 1 = (2n + 3)(3n + 1) 

and for n odd 
3n3 - 5n2 _ 14n + 6 

(10) am -i = (n - 1)(2n + 3)(3n -2) 

Lemma 2 implies for R = RGnK, s = 1, and m = 3n + 2 + K 

C3n+2+K (RGK1) 

< IRGKT3n+2+K 2 (3n + 2 + )!23n2K X2)3n+2+K-/2 dx 
12n+lLn2+J] 7r (6n +4 +2K)! 

1 ( 2(6n + 4 +2K)! 6n + 6 + 2K 1/2 
+ (3n + 2 + K)!23n+l+K {2(6n+6+2K)! 6n+3+2K}/ 

* sup IR i [ T3n+2+K+]I.# 
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Since 

I l ( l - x2)3n+2+K- 1/2 1 dx= 2 
F)(3n + 2+ K+ 2) 

and sup,y>2 IRGK I[T3n+2+?]Il < 4, we find 

C3fl+2+K (R2 ) < (3n + 2 + K)!23n+ I +K 

(In+[T3nl2?K]I 
+ 

V(6n + 3 + 2K)(6n + 5 + 2K) 

Using (6), (7), (8), (9), and (10), we conclude the result after some simplifying 
calculation. El 

Proof of Lemma 1. The recursion formula (2) for ce, and e -1, respectively, 
is 

v-1 v-1 

av = -fv - x /eAV-y I 0 = -fJ-i - i cyfv- I -Y. 

Multiplication of the first by fv-l and the second by -fv and summation, 
yields 

v-1 v-1 

fv-Iav = E Cf[fv - I -- V - J'-f ] = E CyfV-IfV-I- (UV - Uv -) 

v-1 

= fv-l E3 aCfJV-l-qU(a - UV-,U), 

leading to the first assertion (see also [6] for this method). Using fv > 0 and 
UV - UV-,U > 0 for , = 1, ..., v - 1, we find that all terms in the right- 
hand sum have the same sign, and we conclude the second assertion, using the 
monotonicity of (rv). Since (-av+?) is completely monotonic, the last two 
inequalities of Lemma 1 follow readily. El 

Proof of the Corollary. Theorem 4 of [2] states that 

C3n+2+K(R2n+1?) < C3n+2+K(R2n+1), 

where 

c3n+2+Kx(R2n+1) = (3n + 2 + K)!23n+2+K 

{(n- K)!(6n + 4 + 2K)! 7n + 4 + K 

l (7n +4 +K)! 8n +4 

* +5 (n + 1 - K)(n +2 -K) 8 1/2 

V 3 (6n + 3 + 2K)(7n + 5 + K)J 

Using the lower bounds (1) for C3n+2+K(R GnK1), the following inequality can 
be proved for n > 4 after some (elementary) calculation involving Stirling's 
formula: 

(11l) C3fl?2?FC(R2n+1) < C n23/4 ( ) 
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with c = 0.62. Inequality (11) yields c3nf+2+K(R2n+1) ? C3fl2+K(R2+l) for 
n > 10 and C3n?2?K(R?2n+l)/C3n+2+K(RGnKl) < 3-n+l for n > 68, where for 
1 < n < 9 and 15 < n < 68, respectively, the results can be proved numerically 
(cf. [4]). In [2, Theorem 4] it is stated that the upper bound T3n+2+K(R flG) 

can only be improved by 0(n3/4). Using this result and the remark in ? 1 to 
obtain also a lower bound for the ratio in (1 1), the corollary follows. El 

3. FURTHER REMARKS 

1. Using similar methods as described above, respective results can be ob- 
tained in the more general case of an ultraspherical weight function (cf. [4]). 
For w(x) = (1 - x2)-1/2, Ei (0, 1), n > 4, K = Ln+lJ - L[2 there holds 

C3n+2+K (RGK 1) < C3n+2+K(RGK) 1 , where 

C3n+2+K (R4 1G) 

2n+,z 9+4 

(3n + 2+ K)!23n+l+K (221- I - iA) 9n - 3K+ 4{ 

,( 6(2n + 2 + A) 

{(n ?)A-1 +?K)(9n+42)A} 

+ 2v/(72\/ + (1 + K)/4)>-1 

+\I(6n + 3 + 2K)(6n + 5 + 2K)J 

Lower bounds for C3n+2+K(R2GnK) can be found in [4], which for the quality of 
the upper bounds yield 

C3n+2+K(R2GK l) - O(n3?l/l). 

C3n?2?K (RGK~1 

The corresponding error constants of QCG are again significantly smaller (cf. 
[4]). 

2. Using the methods derived in the proof of the theorem in ? 1, we can also 
prove bounds for the error constants C3n+2+K-S(RGKl ) of nonmaximum order 
(cf. [4] for details). In the case of constant s E N, these bounds are again better 
than the hitherto best-known bounds. For their quality we can prove 

c3n+2+K-S(R2GK?l) - 

C3n+2+K-s(RGK1) 

In the case s = s(n) E , limn1O 3n+2+K-s = A > 0, the new bounds are of 
quality 

lim 2nC3l+2+K-s (R2n -) AA (3 - A)(3-A/2 (3 + A)(3+A)/2 
noo C3n+2+K-s(RG) 33(2A)A 

The corresponding error constants of QGn can be proved to be significantly 
smaller for 2 < A < 3. 
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